-

AD-All6 811 PURDUE UNIV LAFAYETTE IN DEPT OF COMPUTER SCIENCES F/6 9/2
EXPERIMENTAL INVENTIGATION OF PROGRAMMING COMPLEXITY IN COBOL.(U)
MAY 82 H E DUNSMORE DAAGZQ-TQ'C-0173
UNCLASSIFIED ARO-16758.1-EL-A

[T

AD A116811

DT FILE COPY

UNCLASSIFIEC /,,7
SECUNITY CLASSIFICATION OF Tr15 PAGE rWhen Data Fntered,

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORE COMPLETING FORM
REPORT NUMBER

]2 GovT Accession no)
o A R ‘y |
16758. 1-EL-A ST i) Ly

*rL —— e
TITLE (and Subtitie)

RECIPIENTY'S CATALOG NUMBER

»

i % TYyPE OF REPORT & PERIOD COVERED

Final:
Experimental Investigation of Programming | 9 Sep 79 -~ % Mar 82
Complexity in Cobol

’; CERF. uMinG GRG REPORT NUMBER

7. AUTHOR(s)

8 CONTRAC™ OR GRANT NUMBER(s,

DAAG29 79 € 0173

H. L. uunsmore

A ADDRESS 10 PROLRAM £ _EMENT PROJECT TASK
$. PERFORMING oRGAmz.Aﬂon NAME AND ARE: e N T e S
Purdue University
West Lafayette, IN 147907
11. CONTROULLING OFFICE NAME AND ADORESS 12. REPORT DATE
J. 5. Army Reseqroh "ffice May 82
Post Nfrice Box 1771l '3 NUMBER OF PAGES
Research Trianglie Park, W7 277239 25
4. MOMITORING AGENCY NAME & ADDRESS(H! diiferent from Controlling Oflice) 15

SETURITY CLASS. (of thie report)

18. DISTRIBUTION STATEMENT (of thie Report)

A E‘ -

e ! ‘
18. SUPPLEMENTARY NOTES

Approved for public release; distribution unlimited. D {\ “"‘

T DISTRIBUTION STATEMENT (of the abatract entered in Block 20, !f different froe Report) u

The view, opinions, and/or findings contained in this report are tnose of the
author(s) and should not be construed as an official Department of the Ar~y
position, Jolicy, or decision, unless so designated by other documantation.

19. KEY WORDS (Continue on reverse side ([Necessary and (dentily Dy 0I0CK fiumoer)

error-proneness computer programmina
cosoL

programming languages
language features

IL;fSYIACT Captime an reverss sfdd /f neceocsary and !dentify by dlock number)

This study investigated programming activity in COBOL. Attempts were made to
identify problem areas so that improvements can be made in COBOL compilers and
in the manner in which COBOL is taught. Identification of problem areas was
achieved through examining program changes made by student proarammers durinc
the development of four different COBOL programs. The data, which was collected
from a COBOL course at Purdue University, consisted of all versions of all

programs submitted for compilation by each student. Thus, the data represented

Kd

UNCLASSIFIED

CEFTIMMTY (1 ARKIFIF AT IAN F Taik DAGK /Whan Pata Faturad)

82 00 veg 18¢

"e

DD ., onr WUI3 ceomonor) nov@ns O®SOLETE
.

Y

unclussilieaq

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. AB3TRACT CONTINUED

i a complete history of each subject's program development process beainnina with| the
initial version compiled and ending with the final version submitted for
grading. A21] program changes made between two successive versions were
classified into four categories: COBOL-related, algorithmic, cosmetic and
report-aeneration-related. This classification scheme indicates that a
significant number of changes are related to report generation which suggests
a need for support in this area. Secondly, all COBOL-related changes were
delineated into 104 error categories. This delineation suggests that there are
several problem areas in COBOL. Finally, the four categories of prooram
changes were observed with respect to various points in the program
development process. Most COBOL-related chances occur before the midpoint of
the program development process whereas most cosmetic changes occur late in
the process.

R
Accession For

NTIS CRARI 2%
DTIC TAB

Unennoaneed
Justificatison .

—_—— et

e —

Dictribution/

——

Availability Codes
T pveil cad/or

Dist fpecial

a Lo

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

FINAL REPORT
(TWENTY-FIVE COPIES REQUIRED)
1. ARO PROPOSAL NUMBER: 16758-A-EL

2 FERIOD COVERED BY GRANT: September 9, 1979 - March 8, 1982

3. TITLE OF RESEARCH: EXPERIMENTAL INVESTIGATION OF PROGRAMMING
COMPLEXITY IN COBOL

4. CONTRACT OR GRANT NUMBER: DAAG29-79-C-0173

5. NAME OF INSTITUTION: Purdue Research Foundation, Purdue University
6. PRINCIPAL INVESTIGATOR: Dr. H. E. Dunsmore, Assistant Professor

7. SCIENTIFIC PERSONNEL SUPPORTED BY THIS PROJECT:
Research Assistants: Andrew Wang, Dennis Volpano, Paul Scherf,
and Stanley Dunn

The attached technical report includes a statement of
the problem studied and a summary of the most important
results,

Dr. H. E. Dunsmore 16758-A-EL

Purdue University
Department of Computer Sciences

West Lafayette, IN 47907

Problems With COBOL - Somc Empirical Evidence

CSD TR-371
August 1, 1961

D .M. Volpano
H. F. Dunsmore

Department of Computer Sciences
IPurduc Universily
West Lafayctte, Indiana 47907

ABSTRACT

This study investigated programming activity in COBOL.
Attempts were made to identify problem areas so that improve-
ments can be made in COBOL compilers and in the manne in
which COBOL is taught. identification of problem arecas was
achieved through examining program changes made by student
programmers during the development of four difTerent COBOL pro-
grams. The data, which was collected from a COBOL course at Pur-
due University, consisted of all versions of all programs submitted
for compilation by each student. Thus, the dala represented a
complete history of each subject’s program development process
beginning with the initial version compiled and ending with the
final version submitted for grading. All program changes madc
between two successive versions were classified into four
categories: COBOL-related, algorithmic, cosmetic and report-
generation-related. This classification scheme indicates that a
significant number of changes are related to report generation
which suggests a need for support in this arca. Sccondly. all
COBOL-related changes were delineated into 104 crror categorics.
This delineation suggests that Lhere are several problem areas in
COBOL. Finally, the four categories of program changes were
observed with respect Lo various points in the program develop-
ment process. Most COBOL-related changes occur before the mid-
point of the program developmenl process whercas most cosmetic
changes occur late in the process.

Keywords and Phrases: error-proncncess, COBOL, programming languagces,
language features

1. Introduction

There is no doubt Lthat COBOL is an important programming lanpguage. As
part of Lhe early triumvirate (with FORTRAN and ALGOL) COBOl. is still itiportant
in business school programs and is the most widesprecad and intensively-usced
language in application programming [Phil73,Lemo79]. In industry, it hau
weathered the storm of PL/1 and even seems Lo be holding on in a world rapidly
filling with PASCAL-trained programmers. Therc arc Lhosce who belicve that ADA

-2 -

will ullimately make COBOL obsolete but the slow pace of ADA’s introduction
suggesls Lhat if such occurs, it will be far in the future. Thus, for the present it
appears that "real-world" programmers will continue to construct "real-world"
programs in COBOL.

Despite COBOL's widespread use, it suffers [rom "human engineering
problems” [Nels?2]. The language has some features that are difficult Lo use
safely (eog. the CORRESPONDING oplion). Although COBOL has been touted as
“castly-recadable”, few have ever claimed that it is "easily-writable".
Furthermore, COBOL has received little academic attention {Samm78]. Little
research has been done to attempt to identify problems with this language.

\t Purduc University, we have been conducting a research project
imvestigating COBOL. We are interested in those features of the language that
may be troublesome for programmers. Our goal has been to identify such
features so that (1) they might be emphasized when teaching COBOL, (2) existing
compilers might be allered to provide better diagnostics, and (3) ultimately
some language features might be changed to make them more usable. In the
following sections of this paper, we describe a previous study of COBOL, report
the methodology we employed, and discuss our results.

2. Provious Rescarch

There have been attempls Lo investigate Lhose conslructs in ALGOL, BASIC,
COBOL, FORTRAN and P17 which are difficull to use. Youngs [Youn'74] analyzed
649 prosrains wrillen in Lhese languages and delineated errors into 8
functionally defined calegories @ allocalion, assignmoent, {teration, 170
forinatling, other 170, parameler/subscript list, conditionals and vertical
detimiter. He found thal these categories accounted for approximately 83
percent of all errors comumnitted.

Youngs' sludy suggests that COBOL suffers in terms of allocation for two
reasons. The allocalion of space (for identifiers, tables, etc.) in COBOL is
complex. Consider the following declarations for a 5 X 10 array in both FORTRAN
and COBOL:

FORTRAN
DIMISNSION [TEMS (5.10)

COBOL
0! ITEMS-TABLE.
05 ITEMS-1 OCCURS 5 TIMES.
10 ITEMS-2 PICTURE 999 OCCURS 10 TIMES.

Note that although the syntax used in COBOL to allocate space for tables is
relalively complex, it provides a greater degree of flexibility. For example, one
can access an entire "row” of the Lable declared above in COBOL using ITEMS-1
(1Yfor I=1,2,..,5. Secondly, COBOL suffers in terms of allocation because there
1w bl of comiplete implicit and default specifications. IM'or example, in the
above FORTRAN declaration, ITEMS is implicilly declared Lo be an array of type
imteger CONOL does not provide such an implicit Lype specificalion.

Another study conducted Ly Litecky and Davis studied errors and error-
pronencess in COBOL [Lile78). "Lrror-pronencss’ is defined as the error
frequency for a particular language element divided by the number of usages of

-~

-3-

that element. Errors from 1,400 runs from 73 students in a beginning COBOL
course were classified according to a scheme established from a pilot study.
The hierarchical classification scheme distinguished 132 Lypes of errors. The
highest level consisted of 32 major error classes such as hyphenation and
punctuation. A relatively high frequency was found for tmany differenl types of
COBOL errors. For example, a missing pcriod and a misspelled structural word
accounted for 8.6 and 2.8 percent of all COBOL errors respectively. However,
only four error types were declared to be error-pronec:

[1] Period added after the file name specified 1 a file description (D). Ior
example

FD INPUT-FILE-NAME.
LABEL RECORDS ARE STANDARD.

The period inserted after "INPUT-FILE-NAME" is syntaclically incorrecct.

[2]) The use of commas as word delimiters. The following 1s an example of a
comma used to delimit the identiflers B and C

ADD ATOB,C

The proper delimiter is a space rather than a comma.

[3] A missing period after a record name at a level 01. For example

FD INPUT-FILE

LABEL RECORDS ARE STANDARD.
01 INPUT-RECORD

05 SOME-FIELD PIC 99.

COBOL syntax requires a period after the group level item "INPUT-RECORD".

[4] Operand(s) of an arithmetic statement are not computational in nature.
For example, the arithmetic statement ADD A TO B is invalid in the context

05 A PIC 999.
05 B PIC Z49.

S T T T N -

since Bis alphanumeric.

lateeky and Davis also studied the content of specific high-frequency errors
and Lthe accuracy of compiler-generated error diagnostics. They found that B0
percent of Lhe spelling crrors in COBOL could be classified into only 4 error
classes and therefore could be correcled by existing algorithms. The 4 error
classes are

1} One letter wrong
|2] One letter missing
{3] An extra charactler inserted

[4] Two adjacent characters transposed

The diaghosis of COBOL errors by the compiler (Control Data Corporation
COBOL compiler for the 6600) was comparcd with the diagnosis of a "conversant”
human judge. The major finding was that less than one in five errors were
accuralely diagnosed by the compiler.

The idea behind their research is good but we believe that their study has
three major shortcomings.

(1] The COBOL errors identificd are very low-level. For example, errors such as
a mussing hyphen in a FILE-CONTROL clause are very elernentary relative to
those errors that will cause problems for experienced programmers using
advanced {catures. Thus, COBOL errors which most likely occur at the
professional level have not been adequately identified.

The behavior of high-frequency errors and error-proneness has not been
observed over time. Thus, some error Lypes that are claimed to be error-
prone me not be a problem as progranimers become more experienced in
COHOL. For example, in our study we found that the frequency for the error
lype "period addced after FD filename” decreases quickly.

{3] Only one compiler was considered in the study of error diagnosis accuracy.
Therefore any results pertaining to error diagnosis accuracy cannot be
generalized.

(48]
—

3. Proccdure

Our rescarch attempts to identify problem arcas in COBOL by studying
program changes made by programmers who developed several different
programs A program change is defined as a textual change between successive
versions of a program [DunsB0]. Each of the following textual changes to a
program represents one program change:

One or more changes to a single statement. Even multiple character
changes to a staternent represent mental activity with only a single
abstract instruction.

One or more stalements inserted betwecn cxisting statements. The
contiguous group of stalements inscrted probably corresponds to the
concrete stalements that represent a single abstract instruction,

A change to a single statement followed by the inscrtion of new stalements

The following textual changes to a program are not counted as program
changes:

The deletion of one or more statements. Deleted statements musl usually

be replaced by other statements clsewherc. The inscrted statements are

counted. Counting deletions as well would give double weight Lo such a

change.

The insertion of standard output statements. These are occasionally
inserted in a "wholesale" fashion during debugging.

Examining program changes for several different programs developed by the
same set of subjects enabled us to observe the frequency of various error Lypes
with respect to time.

Our research involved threc major arcas:

(1] All program changes were classified as algorithmic, COBOL-relaled,
cosmetic, or report-generation-related. Algorithmic program changns arc
those needed to correctly implement an algorithm. i'or example, changing

IF KEY = DEPT-NO
to
IF KEY = DEPT-NO AND NOT = PREV-DEPT-NO

is considered an algorithmic change since the original statement is
syntactically correct. The change is made to correctly implement the
chosen algorithm. COBOL-related changes arc those necessary duc to
restrictions imposed by COBOL. For example, a missing hyphen in a
keyword {e.g. LINE-COUNTER) necessitates a COBOL-rclated change.
Cosmetic changes include the insertion of blank lincs and comments as well
as reformatting without alteration of existing stalements. Report-
generation-related changes include those changes necessary to gencrate a
report. Such changes often involve maintaining page numbers,
manipulating carriage conlrol and determining page breaks (The Report
Writer feature was not used in any of the programming assighments). Some
program changes can be placed into two categorics. For example, changing

IF LINE-COUNTER > 55
to

IF LINE-KOUNTER > 60

is considered to be both a COBOlL-related and report-generalion-relaled
change; COBOL-rclated because LINE-COUNTER is a COBOL reserved word
and rcport-related because 60 lines arc now desired rather than b5, As an
cxample of the inlersection betwecen the calegories of algorithinic and
COBOL-related, consider changing

IF EMP-NO <> PREV-EMP-NO

-

to
1 EMP-NO NOT = PREV-EMP-NO AND OLD-EMP

This change is considered algorithmic because an additional condition must
be satisfied and 1s considered COBOL-related because <> cannot be used
Lo denote incquality in COBOL.

[2] All COBOL-related program changes were further delineated into 104 error
calegories such as editing, literals, punctuation etc.,

[3] bach of the tour categories of program changes were examined with respect
to when they occur in the program development process.

The data for our rescarch was obtained from students in an upper-level
COBOL course at Purdue University in the summer of 1980. The students, who
had some experience programming in FORTRAN or PASCAL, were required to
write {ive programs (COBOL1, COBOLZ, ..., COBOLS) as part of the course
requircments. The first program, COBOL1, was disregarded for our purposes
because it did not demand significant programming effort and represented most
sludents® initial experience with COBOl. The second program, COBOLR2, involved
writing a file in rcadable form. The last three programs, which were
npproximalely 700-800 lines of code each, invelved master flle updating. COBOLS
required changing CUBOLA Lo include random access. Some COBOL features that
would most likely appear at the professional level, namely sorting and random
access, were employed in COBOL4 and COBOLS only. Thus, we could not observe
how the frequency of program changes in these calegories behave over time.

All versions of a particular program submitted for compilation werc
captured for cach programmer. The average number of versions submitted per
proprammer ranged from 12 for COBOLR to 53 for COBOL4. Instead of examining
all versions from approximately 40 programmers for each programming
assignment, a random sample of 10 programmers was used. A sample size of 10
scemed Lo be appropriate since 2 random samples, of 10 programmers each,
viclded similar results for COBOL2. For each of these sample groups, Table 1
shows the frequency of changes for each category and the percentage that
frequency is of the total number of changes.

| COBOL __ | Alporithmic | Cosmetic | Report Generation
L { % f A f % f %
i Group 1 | 176 | 23.9 | 1BY 25.9 193 | 20.7 | 371 50.4
[Group2 | 151 | 208 | 184 | 25.4 | 102 | 12.3 | 407 56.2
o
Table 1

To examine program changes belween Lwo sucecssive versions, a system
utility called "SRCCOM™ was used. SRCCOM provided a flle of all textual changes
belween two versions. This file was then examined manually.

4. Results

Our results correspond to the three major areas involved in our rescarch.
For each programming assignment, Table 2 shows the frequency of changcs for
each category and the percentage that frequency is of the total number of
changes for that assignment. The sum of the percentages is greater than 100
because of the overlap discussed carlier. Note that algorithmic changes account
for only 25 percent of the changes for COI30L2 bul account [or over 66 percent
of all changes for the last three assignments. [lalf of all changes on COHOL2 are
report-generation-related but for COBOL3, 4, and b these remain relatively
stable constituting approximatcly 25 percent of all changes. Finally, nolice that
those changes necessitated by problems with COBOL remain relatively slable at
about 20 percent. That is, onc of every five changes is due, at least in parl, to
problems with the programming language.

COBOL Algorithmic | Cosmctic | Keporl Generalion '
f % f % f % f ¥ 1
COBOL2 | 176 | 23.9 | 189 | 259 | 193 | 2067 | 371 50 - i
COBOL3 | 197 | 216 | 611 | 67.0 | 1¢7 | 16.3 | 203 223
COBOL4 | 199 | 19.1 | 701 | 673 | 21: | 166 | 276 265 |
COBOLS5 | 38] 21.4) 101] 60.1 | 108 | 39.1 | 44 261
Table2

Appendiz ! represents the delineation of COBOL-related program changes
into the 104 error categories. For each error category, Appendiz ? shows the
frequency of changes made due to this type of error for each programming
assignment. A blank entry in Appendizr ! indicates that the COBOL fealure for
the error category in question was not employed in this programming
assignment. For cxample, only COBOLS required random access and therefore
therc are blank entries for this category for COBOL2, COBOL3 and CO301.4.

I'or programming assigninenls COBOL2-COBOLY, Mgure 1 shows Lhal
COBOL-related changes are typically madc early in the program development
process whereas Figure 2shows that cosmetic changes arc more {requent al the
end. Figures 3 and 4 show that algorithmic and report-generation- related
changes occur throughout the development process.

5. Discussion

As indicated in Table 2, there is a significant number of report-gencration-
relatcd changes for each programming assignment. This suggests that
programmecers could most likely use some support in peneraling reporls. One
Lype of support alrcady being used (not in this study) is the Reporl Writer
featurc. A study has shown thal programmers find Report Writer makes Uhe
maintenance and gencration of reports much casier jAude8t). However, our
rescarch does not suggest that Reporl Wrili:r is a panacea, primarily because
some changes involved fealurces thal exist cven in Reporl Writer. For exaniple,
changes which involved editing were considered report-peneration-related but
clearly such changes may be necessary even if Reporl Wriler were uscd.

-8-

Our research suggests that the following error categories appear to be
problem arcas in COBOL. However, it does not suggest that these categories are
urror prone. Recall that error-proneness is a function of the total number of
usages of a particular language element. Since we did notl attempt to determine
the total number of usages for cach of the language features in question, we
cannot nrahe any conclusions perlaining Lo error-pronceness. The frequency of
program changes for some of these categories remains relatively stable over
thue and therefore these categories appear Lo be problem areas. Other
calegories show potential for being problem areas due to Lhe relatively high
[requency of changes observed.

1] Data-name qualification.

The program changes that we categorized as "data-name qualification”
ivolved qualifying non-unique data names. There werc considerably more
mstances where qualificalion was omitted entirely than there were
istances where it was inadequalely specified. For example, in Lthe context

01 A
0L 13
10 C PIC99.

10 C PIC XXX,

{requentiy the data name C was not qualified when refcrenced in the
procedure division. Proper qualification of C in this context is COF D or (C
OI' 301 D) or C OF A or (C OF BO)' A). The function of non-unique data
nammes in COBOL is twofold; they provide increased flexibility and are
nceeessary for Lhe proper use of the CORRESPONDING option. Despite
increased flexibility, non-unique data names require qualification, and
qualification acltually makes programming in COBOL more cumbersome.
I'or example, consider the arithmetic statement

MULTIPLY QTY-ON-HAND OF INPUT-QTY
BY UNIT-PRICE OF PARTS-RECORD
GIVING TOTAL-COST OF OUTPUT-RECORD.

Dala-name qualtfication appears only Lo complicale programming and make

such arithmebic exprosmons less readable. Since COBOL is an inherently .
verbose lanpuage, it would most likely nol suffer if all dala names were

required Lo be unique.

[2] CORRESPONDING option. :

This [cature may be uscd to reference all fields with common dal.c oo
wilhin two different groups {Shel??]. Most program changes miade dac Lo
the CORRESPONDING option were atlempts to reference the field: e nded
wilthin two different groups. l'or example, 1 the context i

01 A.
05 C.
b D PICX

01 B.
05 C.
10 E.
16 D PICX

we observed many programmers using a statement such as

MOVLE CORRESPONDING ATO B

to move the contents of D in group A to D in group B. However, thic intended
move will not occur in this context since D in group B is al a different level
than D in group A. The CORRESPONDING option has pttfails that have causcd
experienced programmers to minimize its usc. The main problem s that it
tends to create trouble when a program is changed, as virtually all
programs arc If they are uscd for any length of time One portion of «
program Lhat gencerally changes ts the formal of vecords Bxperience has
shown Lhat record format changes very frequently cause Lthe
CORRESPONDING verb Lo give undesired results | NeUr¢G]. The effort ol
using unique data names and explicilly referencine clementary dataoitems
has the advantage of providing casicer maintenance of the program and
reduced chance of error. Thus, il appecars that COBOL world not sutlcr
without the CORRESPONDING option.

[3] Edited numeric data items s operands in arithmetic expressions

The restriction that edited numeric data cannot be used in arithmelic
statements often causes a programmer Lo declarce another dala name to be
compulational in nature. I'or cxample, in the context

05 LINE-KOUNTER PIC 449 I

the statement ADD 1 TO LINE-KOUNTER is invalid since LINFE-KOUNTLR

alphanumeric. COBOI. compilers could be wrilten Lo gencrate code thad o
would cocrce edited numeric dala in much the same way as inlegers are

cocrced in real expressions in FORTRAN. liowever, the introduclion ol ﬂ
coercions Into a programming langunge ghould be done with consderable

discretion {l'ennBlj. For example, consider Lhe declaralion

05 FIELD PIC X

-10 -

The bit configuration of FIELD, which occupies one byte, ¢can represent a
Jdrnt or somme other character st zh as a letter. Since edited numeric data
itlems are a subscet of the set of all alphanumecric data items, it would be
potble Lo extend cocrceion to the set of all alphanumeric data items. Such
an extension would allow 1'13L,D to occur as an operand in an arithmetic
cexpression. However since IELD can represent a letter, coercion would
allow computation of the arithmectic expression to continue and possibly
produce bizarre results. Programmers normally 4o not weicome error
mussages but a message that helps in locating a bug is far more useful than
imncaningless output.

Literal continuation.

The program changes related to literal continuation involved correcting a
misplaced single quote or providing a hyphen in column seven. The
frequency of changes made due to mvalid literal conlinuation decreascs
rapidly after the secund progravuning assignment, COBOL2 (sce Appendiz
1) Uhis raprd dechine s due Lo the abandonment of Lthe technique uscd to
contimue iterals. Progrannners avoided this technique by adopting other
means for declaring lengthy literals. I'or example, some programmers
placed the entire literal on a new line whercas others partitioned the literal
into smaller segments.

1I"-11.3Y pairing convention.
Uer hapea tho most Gumoer oXampla of aanbiguily (n a programming language
15 Lhe danghing 1LSE. Consider the conditional
Ik cy
51
IF ¢
52
ELSE
sq.

example }

I s not elear Lo which I Lthe KLSH corresponds. Without changing the
forimal definition of Lthe syntax ol COBOL, the ambiguily can be resolved in
one of iwo ways. The first approach involves introducing the keywords
BEGIN and END (see exumple 3). The sccond approach, which is used in
COBOL, is Lo adopt a convention. The one used in COBOL is that in a nested
1I stalement, the first LLSE clause corresponds to the innermost 1F

-11 -

statement [Shel?77]. Consider example 1. If 5. is Lo be executed when c. is
false then “ELSE NEXT SENTENCE” must be mserted before the existing
ELSE since the ELSE which currently exists corresponds Lo the innermost 117
(sec example 6).

[8] Dcpendency upon the period to terminate a conditional.

Since COBOL is very sentence-oriented, Lthe placeient of a pertod alter a

statement is natural. However, the use of portods after staletnents withm
conditionals will yield undesirable results. As acresult of the dependenc,
upon the peried in an 11" sltalement, progratuners olten spend uch oo
debugging programs only to discover the exeslonee of an exteateon . poertod

in an [} statement. The following conditional illustrates the probletn ol
period dependency.

ll"c:1

READ file-name
AT END g

54
52.

example 2

The programmer is forced to put a period at the end of the imperative
clause s, so that Sy and s, arc not executed upon an end-of-file condilion
only. However, placing a period after s, causes s, und s, to be exccuted
independently of ¢, because the period terminates boththe AT END clause
and the conditiona}. Clearly, an "ENDIF" or pcrhaps an "ENDAT" conslruct
would eliminate the dependency upon the period. However, until such a
construct is added to the language, COBOL inslruclors should emphasize
such potential pitfalls.

There have been attempts to simplifly COBOL programming by making
COBOL cxtensible; i.e., allowing the syntax and semantics of COBOL, Lo be
changed. One of the earliest and most commonly proposed schemes for
language extension is the macro definition {Grie71,Aho 72]. Already in use, arc
two macro preprocessors MetaCOBOL and COBRA which cnhance COBOI.
[ADR.76,Hami?3). The processor nced not precede compilation. Triance ot al.
built a macro facility into a COBOL compiler [TriaB0}. This compiler is believed
to be the first compiler with a builtin macro facility capable of recognizing
macro calls with arguments. An example of a macro call specified in a COBOL
program is "CSR". This call iniliates execution of a macro which sirnply replaces
the call by "COMPUTATJONAL SYNCHRONIZED RIGIT". The COBOL macro facihly
could conceivably be extended Lo provide support in Lthe arca of nested ‘

_12-

conditionals. IFor example, a programmer could override the convention
adoptled lor IP-KLSE pairing by using the keywords BEGIN and END. For
Caample, assuning sq is to be executed if ¢ 15 false, example ! could be
rewrilien as
I c,
BEGIN s,
I Co
BEGIN So I'ND
END

ELSE BEGIN s5 END.
ceample 3
Suppose there were an "IENDIF construct, then assuming s, and s, are to be

excculed il e is true and independently of the impcrative clause, example 2
could be rewritlen as

I ¢y
READ file-name
AT END Sg.
5.
Sy
ENDIF

example 1

I'o ulilize a macro facility, a programmer could specify a macro call such as
“"CONDITIONAL”. For example
CONDITIONAL
I ¢y

BISGIN
!

IF ¢y

BEGIN s, END
END
ELSE BEGIN s5 END
ENDCONDITIONAL

example

The entire conditional specified between "CONDITIONAL" and
"ENDCONDITIONAL” would be trcated as a by-value parameter subject to
interpretation by a particular macro. This macro would generate standard ANSI
COBOL code for the conditional specified. For example, the code gencrated fur
example 5 would be

IF ¢y
8¢
IF Co

Sp
ELSE
NEXT SENTENCE

ELSE sg-

example 6

6. Summary

Since COBOL is a widely used language, there is a need to identify its
problem areas so that improvements can be made in COBOL compilers and in
the manner in which COBOL is taught. Such improvements could yicld a
reduction in the number of errors committed by COBOL programiners.

Attempts have been made Lo identify error-inducing features in COBOL
[Lite?8,Youn?74]. However, the error frequencies for cerlain COBOL features have
not becn observed with repect Lo titne. Our rescarch attempted to idenlify
error-inducing features {(problem arcas) by obscrving the frequency of errors
for various features over time. Thus Lthe fcatures we have identified as problem
areas arc likely Lo be error-inducing for expericnced as well as novice COBOL,
programmers. Our study suggests there are at lcast six probiem areas in COBOL:

- 14 -

|1} Data-name qualification

2] CORRESPONDING option

(3] Edited numeric data items in arithmetic expressions
[4] Literal continuation

[5] IF-ELSE pairing convention

6] Dependency upon the period to terminate a conditional

l'urthermorc, we have sugpested approaches that may tend to eliminate
somec of these problem arcas. Ior example, we feel that non-unique data names
and the CORRESPONDING option could be eliminated. Edited numeric data items
vccuring in arithmelic expressions could be coerced. A macro facility could be
used Lo alter the syntax of conditionals in COBOL so that errors related to
conditionals can be reduced.

Undoubledly additional problem areas cxist in COBOL. For example, we
could not observe the error frequency for [catures such as the COBOL sort
factlity and random access since these features were not used more than once
by our subjects. Hence, there is a need for further research to observe the
error {requency over time for more advanced features. Upon identifying those
error-inducing features, addilional improvements can be made with respect to
COBOL compilers and the teaching of COBOL.

7. Acknowledgements

We wish to thank Andrew Wang for his effort in the time-consuming task of
collecling Lthe dala (or our study. We would also like to cxtend our appreciation
to 3l Ward and Tom Putnum for aiding in the manipulation of data and lastly to
the mnstructor of the COBOL course Sleve Booth and his students for
pavhicipatimg i the sbady - Thes recenreh wan gupportod by tha U3 Army,
contract no DAAGREI-7Y-C-0174, Purdue Ungversity Computing Center and the
Purduc Universily Departinent of Compuler Science.

-16 -

SIGPLAN History of Programming Languages Conference,
| Los Angeles, June 1978, SIGFPLAN Notices 13, 8
pp. 121-160, August 1978.

[Shel77] Shelly, G.B. and Cashman, T.J., Introduction to
Computer Programming Structured COBOL, Anaheim Publishing Co., 1977.

|'TennB1] Tennent, R.D., Principles of Programming Languages,
Prentice Hall International, 1981.

I'friaBG | Triance, J.M. and Yow, J.F.S., "MCOBOL -
a prolotype macro facility for COBOL", Comm ACM, 23, 8

pp.132-439, Aug. 1980.

‘Youn 1| Youngs, ILA. "ltuman errors in programming”, Int. J.
Man-Machine Studies, 6, pp. 361-376, 1974.

Appendiz 1

Program

COHOLZ COBOL3 (COBOL4 COBULS

Error Categories f f f f

1. Structural Keywords
A. Misspelling

1. ENVJRONMENT 1 0 2 0
2. DATA DIVISION 2 1 0 0
B. Missing Keywords
1. Data Division
a. FILE SECTION 2 1 0
b. WORKING-STORAGE SECTION 1 0 0 0
c. PICTURE 0 3 2 0
2. Procedure Division
a. STuP RUN 0 i 0 c
b. OPEN 0 ! 0 0
c¢. CLOSE ! 1 2 1
d. INPUT/OUTPUT of OPEN 0 0 3 0
2 Sentence Structlure
A Invalid PERMOTM 0 C 3 0
. Dala-name qualification
1. QOmiited 0 5 37 0
2 Insufficient 0 0 3 0
C. Invalid assigmment 0 2 0]
V. Misspelling
1. ASCFNDING 1 o]
2. CORRESPONDING 2 0
3. Editing
A. Zero suppression
1. Truacat:on of higher
order digits 4 o 1 0
3. IdiLing symbols
1. /¥ 9 : 4 0
2. -/S B 0 0 0
3. S used for zerc
suppression 1 e Q 0]
4. B used instead of SPACES 1 0 0 0
» Editing ~ymbol in PiCTURR
pot intended to edil] 3 0 0

C. Use of edited iteamn in

CS Dept.

GaLan

ddddd

S

o
E o

ddddd

i 0 W

VAX 117788

UNIX

Thu Apr

1 12:37:44 1982

dmv

Dennis Volnsano,

MATH 44, ,

[

Y

o\

arithmetic

CORRESPOIDING verb

A. Improper use
Formmat
A. Margins

1. Lelt of colum 8

2. Right of colunn B
3. Left of colum 12
4. Right of colum 72

Reserved words used as
ident iflers

A
B.
C.

PAGE
PAGE-COUNTER
LINE-COUNTER

Data description

A

Formmt
1. Missing keyword ALL
in VALUE clause
Class
1. Alphanureric/Nureric
Spacing
1. Space between type and
length (e.g. PIC X (18))
Level nurber missing

Punctuation

A

Period added

Within CLOSE statament
After FD file-name
After VALUE keyword
Within OPEN statement
Before end of file
description

eriod missing after
SOURCE - COMPUTER
OBJECT - COMPUTER
Croup level item
PICIURE clause

VALUE clause

Program name

FILE SECTION
Paragraph neme

Q\IOUIACJN'-"U [S I R o

Hyphenation

[o N

j—

W

[=Ne)

QOO o — —

B

oo

w

O~ NDWUO~NCO

28

._.
- 00 4

[N N

—

[«

EBO~NLLOO

oo

0

—

[N

Q

—_-—0:5- 00

10.

11

o Write stataient

A, Missing in
! SPECTAL-NAMES
20 SOURCE -COMMUTER
S ORJECT -COMPUTER
4. HGH-VALULS
H - LIMI
B. Added in
1. WORKING-STORACE-SECTION

Literals
A, lateral eontinuation
i Misplaced hyphen or
single qunte
B. Alphanumeric/Numeric
{c.g 1YIC 99 VALUE '20')
C. Alphanumeric literal
Missing quotes
2. length exceeds size
of PICTURE
3. Invalid delimiter

Invalid uvse of figurative
constant :
A, SPACES

Conditionnls
A Fovavind canporaul
AND A g g
2 ot parenthesized
L e |'[__v
3 Inyroper use of AND/OR
13 inva:d 1t fat onal operator
NOT=/ES UNeQUIAL 7 <>
2 Upaece not wreceding/
tollowing relationat
cpurator
5 YA < 1HAN B
o Misioong peried
o Dot ehot B2y

) Perood o nlaced too carly
i s cled conditional
- ot nosted

¢ Abbrv it soas
' Sabyect and relation
! ted in corpound
conditionai which 1nvolves
wclass Lest (c.g.
1P % = 13 AND NUMERIC)

11

o

—
Qo

o

2009

oo

[\vileNeNol

[

oo —

Lo v

[sNeNoNe}

C OO

[e}

[*ReNeNoN)

o

0

[

- 00

8]

14.

16.

17.

A. Write WORKING-STORAGE record
I Write staterents with and
wilhoul ADVANCING oplion

Read statament

A AT END clause amitted

B Conditional within imperative
cliause

C. READ is not last statenent
within conditional

D. READ file-name-1 INTO
file-name-2

E. READ file-name TO record-name

Leve!l B0 ilars

A. DPICTURE clause at level B8

B Quantity MOVEd to a level 88
itemn

C. lovel 88 1Lan MUVIRd

D. Data name with PICTURE clause
used as switcl

Redefinition

A. At a level other than 01 did
not have the same nurber of
bytes as the ilem being
redefined

Tables
A. Subscripting
1. No space separating
data name and left
parentheses of subscript

2. Subscript missing

2. Subscripted data neme used
as subscript

4. Data name withoul OCCURS

vlause is subscripted
B. OCCURS clause
1. At a level 01
2. PIC X(40) OCCURS 40 TIMES/
PIC X OCCUKS 40 TIMES
C. Indexing
1. Use o! an index other than
the index defined for Lhat
table
1. SEARCI verb
1. SKHARCH the incorrect
data nane
.. Level structure

10

o

c

Q

19

nproper | svel number

SORT verhb

'D/Sh

IEAD RETTR

WIRELE B WASE

INPUT/OUTPUT procedure is
Sdoseetion

PEREOIRY paragraph-nane SECTION
INPUEAOUTY PROCEDURE 1S
parcarraph-reaers SECUTON
tnvald s d zort koey

SR elause Tor sort file
N

.

'
b

1}

Liangem

A

not

L U R
3 S

et o dirvision
Foval v e MCT elause

— Q)

—

o

.
g —

(]

0

(@]

s}

CHANRES

oo /’/\\
7) '{ \l . \J /\
~0 301 THMIC / ~— N

[@2]
I
/
/
/
>/
O
QO
we]
@)
—
&2

COBOLA
30
"""" --OBOLZ
u \ /\/ /\ . \mmlﬁ
0 5“ 0O 90 IOO
9¢ OF TOTAL COMPILED
FIc. 1 T
D!
C b L- |
(= £ TED
SHANGES 5§ \-\
3‘ \ \ \\
\,/A\\ \
\ / -
b T \‘\/
o \‘-"‘"\ >“‘"—-':—_~'?-;
l“- P TR R L S B e e o gt
10D 3 50 70 30 100

' ED
o4 OF TOTAL COMPIL

M

F1G. 2

COSMETIC
CHANGE S

REPURT -
REL~T5L

CHAMN ==

100 1
90 1

7) 4

O

1A

)

—t —A 3

——h

i U S

o 37 50 70 90 100

% OF TOTAL COMPILED

10 30

9% CF TOTAL COMPILED

